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LETTER TO THE EDITOR 

Effect of anisotropic constraints on self-avoiding walks 

S S Manna 
Saha Institute of Nuclear Physics, 92 Acharya Prafulla Chandra Road, Calcutta 700 009, 
India 

Received 30 October 1984 

Abstract. Here we study the effect of four types of anisotropic constraints on self-avoiding 
walks (SAWS) on the square lattice, in which walks along one lattice direction are constrained 
differently from those of the other three identically constrained lattice directions. By 
numerical studies we indicate that all these types of anisotropically constrained SAWS 

belong to the universality class of directed self-avoiding walks. 

A self-avoiding walk (SAW) is a random walk which avoids itself such that a self-avoiding 
walker does not visit a site which he has already visited. In constrained self-avoiding 
walks further restriction is imposed, which means that the walker in this case is not 
allowed to visit all the sites which he could visit without constraint. 

Recently a considerable amount of interest has been shown in studying the effect 
of different constraints on SAW statistics, specifically in two dimensions. For example, 
Grassberger (1982) showed that two-choice SAWS, in which no two successive steps 
are allowed in the same direction, belong to the same universality class as the ordinary 
SAW. Directed self-avoiding walks ( DSAWS) (Fisher and Sykes 1959, Chakrabarti and 
Manna 1983) are forbidden to have any step along a specified lattice direction. Field 
theoretic and exact studies (Cardy 1983, Redner and Majid 1983) show that the critical 
behaviour of DSAWS is mean field like and anisotropic. In spiral SAWS (Privman 1983), 
the constraint is such that every step forbids its next step to be in the clockwise (or 
anticlockwise) direction, so that the walk spirals about a direction perpendicular to 
the plane of the walk. Such a constraint also leads to a different universality class 
(Blote and Hilhorst 1984, Guttmann and Wormald 1984). 

At this stage we would like to classify constraints into two categories, isotropic and 
anisotropic. In isotropically constrained walks, when the walker makes a step along 
any lattice direction he faces the same restriction in his choice for the next step (e.g. 
two-choice and spiral SAWS). In anisotropically constrained walks restrictions are 
different for different lattice directions (e.g. the DSAW). 

We consider here four types of anisotropically constrained SAWS on the square 
lattice which are more non-trivial than the DSAW in the sense that a stronger excluded 
volume effect is present in these walks. In these constrained SAWS, the restrictions 
along three lattice directions are the same, but are different for the fourth lattice 
direction. Specifically they are as follows. 

(1) Two-choice restriction along the +x direction and no restriction along the other 
three directions (figure l(a)).  
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Figure 1. Choices for (n+ I)th step (shown by broken arrows) for various directions of 
the nth step (shown by continuous lines): ((I), ( b ) ,  (c) and ( d )  for types 1, 2, 3 and 4 of 
constrained SAWS respectively. 

(2) No restriction along the +x direction and two-choice restriction along the other 
three directions (figure 1 ( b ) ) .  

(3) Spiral restriction along the +x direction and no restriction along the other 
three directions (figure l(c)) .  

(4) Spiral restriction along the +x direction and two-choice restriction along the 
other three directions (figure 1 ( d ) ) .  
Extrapolations of the exact enumeration results for these walks show that these walks 
belong to the universality class of directed self-avoiding walks. 

The total number of independent configurations CN and the average of the square 
of the end-to-end distance ( R ; )  for walk length N vary as C ,  - p N N Y - '  and ( R L )  - 
N Z y  in the N+oo limit. The average end-to-end distance exponent v and scaling 
length exponent y for SAWS are 0.75 and 43/32 respectively (Nienhuis 1982), whereas 
for DSAWS the exponents associated with projection of the end-to-end distance vector 
along and perpendicular to the preferred directions are viI = 1 .O, v L  = 0.5 and y = 1.0 
(Cardy 1983). Redner and Majid (1983) introduced a two-choice DSAW in which two 
perpendicular directions are forbidden for any step. For this walk vII = vI = 1.0 and 
y = 1.0. 

For each kind of anisotropically constrained SAW we first enumerate all the SAW 

configurations, for a finite walk length N, following Martin (1974). We calculate the 
number of independent configurations C ,  for walk length N, and the average of the 
square of the projection of the end-to-end distance along the x and y axes (denoted 
by ( R % ( X ) )  and ( R $ ( y ) )  respectively) (see table 1) .  The values of the scaling exponent 
y and connectivity constant p are determined from these simulation results for finite 
walk length N, following the extrapolation method of Martin et a1 (1967). To find the 
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distance exponent we calculate (Grassberger 1982) 

V N  = (N/2)[((R’N+I>/(R$)) - 11 
for both x and y axes. Plotting these values of vN against 1/ N for both x and y axes, 
we find v, and vu (for 1/ N + 0) from separate extrapolations for even and odd values. 
For different types of anisotropically constrained SAWS, results are given in table 2. 

Table 1. C,, ( R L ( x ) )  and ( R L ( y ) )  as defined in the text for types 1, 2, 3 ,4  of constrained 
SAWS respectively. 

( 0 )  

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
1 1  
12 
13 
14 
15 
16 
17 

4 
1 1  
31 
79 

209 
535 

I393 
3 559 
9 191 

23 467 
60 299 

153 923 
394 457 

I 006 697 
2 575 973 
6 573 319 

16 805 237 

0.500 00 
1.090 90 
1.838 70 
2.886 07 
4.023 92 
5.450 46 
6.974 15 
8.817 08 

10.765 85 
13.042 82 
15.451 94 
18. I84 07 
21.072 21 
24.280 72 
27.663 06 
3 1.364 26 
35.252 58 

0.500 00 
1.454 54 
2.516 12 
4.000 00 
5.473 68 
7.222 42 
8.934 67 

10.878 33 
12.764 87 
14.841 94 
16.867 84 
19.039 15 
21.167 03 
23.408 63 
25.61 1 83 
27.905 54 
30.164 30 

N cr4 ( R k ( X ) )  ( R L ( Y N  

I 4 0.500 00 0.500 00 
2 9 1.333 33 0.888 88 
3 21 2.333 33 I .333 33 
4 41 4.195 12 2.048 78 
5 87 6.218 39 2.689 65 
6 179 8.916 20 3.396 64 
7 377 11.94429 4.079 57 
8 787 15.593 39 4.797 96 
9 1659 19.630 50 5.485 23 
IO 3 465 24.405 19 6.222 22 
1 1  7 293 29.569 3 I 6.922 25 
12 15 287 35.424 60 7.651 46 
13 32 153 41.742 76 8.358 72 
14 67 479 48.735 04 9.085 19 
I5 141 909 56.216 21 9.795 02 
16 298 21 I 64.322 69 10.513 03 
17 627 233 72.956 76 11.222 21 
18 1318217 82.235 73 11.940 98 
19 2772 623 92.037 98 12.650 65 
20 5829 947 102.452 89 13.364 54 
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Table 1. (continued) 

( C )  

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
11  
12 
13 
14 
15 
16 

4 
11  
30 
77 

202 
516 

1338 
3 413 
8 794 

22 437 
57 614 

147 043 
376 884 
962 144 

2463 480 
6290 460 

0.500 00 
1.363 63 
2.366 66 
3.662 33 
5.014 85 
6.635 65 
8.290 73 

10.216 23 
12.175 68 
14.391 27 
16.652 39 
19.152 83 
21.7 10 26 
24.492 68 
27.341 95 
30.403 92 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

4 
8 

16 
27 
49 
87 

157 
282 
512 
916 

1658 
2 990 
5 412 
9 761 

I7 668 
31 928 
57 793 

I04 496 
189 171 
342 164 
619 397 

1120 801 
2028 972 
3671 659 
6646 627 

0.500 00 
1.375 00 
2.437 50 
4.296 29 
6.204 08 
8.574 71 

1 I .076 43 
13.936 17 
16.890 62 
20.406 11 
23.979 49 
21.939 79 
32.086 50 
36.657 41 
41.400 61 
46.512 90 
51.856 19 
57.558 71 
63.501 24 
69.801 48 
76.356 71 
83.245 31 
90.408 90 
97.909 84 

105.687 58 

0.500 00 
0.875 00 
1.31250 
2.074 07 
2.877 55 
3.885 05 
5.057 32 
6.446 80 
7.992 18 
9.868 99 

11.881 78 
14.160 53 
16.629 89 
19.391 14 
22.329 97 
25.538 33 
28.947 38 
32.623 87 
36.502 34 
40.648 18 
45.001 56 
49.609 03 
54.433 89 
59.515 30 
64.8 14 40 

From table 2,  it is likely that anisotropically constrained SAWS of type 1 and 2 belong 
to the universality class of DSAWS whereas type 3 and 4 belong to the universality class 
of two-choice DSAWS. 
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Table 2. P, y, U, and uY constants for different types of constrained SAWS. 

1 2.535 1.015 1.011 0.527 
2 2.107 1.028 0.99 1 0.489 
3 2.550 1.038 0.988 0.988 
4 1.811 1.018 1.001 0.997 

I am grateful to Dr B K Chakrabarti for many useful comments and suggestions. 
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