Effect of anisotropic constraints on self-avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18 L255
(http://iopscience.iop.org/0305-4470/18/5/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:29

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Effect of anisotropic constraints on self-avoiding walks

S S Manna
Saha Institute of Nuclear Physics, 92 Acharya Prafulla Chandra Road, Calcutta 700 009, India

Received 30 October 1984

Abstract

Here we study the effect of four types of anisotropic constraints on self-avoiding walks (SAws) on the square lattice, in which walks along one lattice direction are constrained differently from those of the other three identically constrained lattice directions. By numerical studies we indicate that all these types of anisotropically constrained SAWs belong to the universality class of directed self-avoiding walks.

A self-avoiding walk (SAw) is a random walk which avoids itself such that a self-avoiding walker does not visit a site which he has already visited. In constrained self-avoiding walks further restriction is imposed, which means that the walker in this case is not allowed to visit all the sites which he could visit without constraint.

Recently a considerable amount of interest has been shown in studying the effect of different constraints on saw statistics, specifically in two dimensions. For example, Grassberger (1982) showed that two-choice saws, in which no two successive steps are allowed in the same direction, belong to the same universality class as the ordinary saw. Directed self-avoiding walks (DSAws) (Fisher and Sykes 1959, Chakrabarti and Manna 1983) are forbidden to have any step along a specified lattice direction. Field theoretic and exact studies (Cardy 1983, Redner and Majid 1983) show that the critical behaviour of DSAWs is mean field like and anisotropic. In spiral saws (Privman 1983), the constraint is such that every step forbids its next step to be in the clockwise (or anticlockwise) direction, so that the walk spirals about a direction perpendicular to the plane of the walk. Such a constraint also leads to a different universality class (Blöte and Hilhorst 1984, Guttmann and Wormald 1984).

At this stage we would like to classify constraints into two categories, isotropic and anisotropic. In isotropically constrained walks, when the walker makes a step along any lattice direction he faces the same restriction in his choice for the next step (e.g. two-choice and spiral saws). In anisotropically constrained walks restrictions are different for different lattice directions (e.g. the DSAW).

We consider here four types of anisotropically constrained saws on the square lattice which are more non-trivial than the DSAW in the sense that a stronger excluded volume effect is present in these walks. In these constrained saws, the restrictions along three lattice directions are the same, but are different for the fourth lattice direction. Specifically they are as follows.
(1) Two-choice restriction along the $+x$ direction and no restriction along the other three directions (figure $1(a)$).

Figure 1. Choices for $(n+1)$ th step (shown by broken arrows) for various directions of the nth step (shown by continuous lines): (a), (b), (c) and (d) for types $1,2,3$ and 4 of constrained SAWS respectively.
(2) No restriction along the $+x$ direction and two-choice restriction along the other three directions (figure $1(b)$).
(3) Spiral restriction along the $+x$ direction and no restriction along the other three directions (figure 1(c)).
(4) Spiral restriction along the $+x$ direction and two-choice restriction along the other three directions (figure $1(d)$).
Extrapolations of the exact enumeration results for these walks show that these walks belong to the universality class of directed self-avoiding walks.

The total number of independent configurations C_{N} and the average of the square of the end-to-end distance $\left\langle R_{N}^{2}\right\rangle$ for walk length N vary as $C_{N} \sim \mu^{N} N^{\gamma-1}$ and $\left\langle R_{N}^{2}\right\rangle \sim$ $N^{2 \nu}$ in the $N \rightarrow \infty$ limit. The average end-to-end distance exponent ν and scaling length exponent γ for saws are 0.75 and $43 / 32$ respectively (Nienhuis 1982), whereas for dSAws the exponents associated with projection of the end-to-end distance vector along and perpendicular to the preferred directions are $\nu_{\|}=1.0, \nu_{\perp}=0.5$ and $\gamma=1.0$ (Cardy 1983). Redner and Majid (1983) introduced a two-choice DSAw in which two perpendicular directions are forbidden for any step. For this walk $\nu_{\|}=\nu_{\perp}=1.0$ and $\gamma=1.0$.

For each kind of anisotropically constrained saw we first enumerate all the saw configurations, for a finite walk length N, following Martin (1974). We calculate the number of independent configurations C_{N} for walk length N, and the average of the square of the projection of the end-to-end distance along the x and y axes (denoted by $\left\langle R_{N}^{2}(x)\right\rangle$ and $\left\langle R_{N}^{2}(y)\right\rangle$ respectively) (see table 1). The values of the scaling exponent γ and connectivity constant μ are determined from these simulation results for finite walk length N, following the extrapolation method of Martin et al (1967). To find the
distance exponent we calculate (Grassberger 1982)

$$
\nu_{N}=(N / 2)\left[\left(\left\langle R_{N+1}^{2}\right\rangle /\left\langle R_{N}^{2}\right\rangle\right)-1\right]
$$

for both x and y axes. Plotting these values of ν_{N} against $1 / N$ for both x and y axes, we find ν_{x} and ν_{y} (for $1 / N \rightarrow 0$) from separate extrapolations for even and odd values. For different types of anisotropically constrained sAws, results are given in table 2.

Table 1. $C_{N},\left\langle R_{N}^{2}(x)\right\rangle$ and $\left\langle R_{N}^{2}(y)\right\rangle$ as defined in the text for types $1,2,3,4$ of constrained saws respectively.
(a)

N	C_{N}	$\left\langle R_{N}^{2}(x)\right\rangle$	$\left\langle R_{N}^{2}(y)\right\rangle$
1	4	0.50000	0.50000
2	11	1.09090	1.45454
3	31	1.83870	2.51612
4	79	2.88607	4.00000
5	209	4.02392	5.47368
6	535	5.45046	7.22242
7	1393	6.97415	8.93467
8	3559	8.81708	10.87833
9	9191	10.76585	12.76487
10	23467	13.04282	14.84194
11	60299	15.45194	16.86784
12	153923	18.18407	19.03915
13	394457	21.07221	21.16703
14	1006697	24.28072	23.40863
15	2575973	27.66306	25.61183
16	6573319	31.36426	27.90554
17	16805237	35.25258	30.16430

(b)

N	C_{N}	$\left\langle R_{N}^{2}(x)\right\rangle$	$\left\langle R_{N}^{2}(y)\right\rangle$
1	4	0.50000	0.50000
2	9	1.33333	0.88888
3	21	2.33333	1.33333
4	41	4.19512	2.04878
5	87	6.21839	2.68965
6	179	8.91620	3.39664
7	377	11.94429	4.07957
8	787	15.59339	4.79796
9	1659	19.63050	5.48523
10	3465	24.40519	6.22222
11	7293	29.56931	6.92225
12	15287	35.42460	7.65146
13	32153	41.74276	8.35872
14	67479	48.73504	9.08519
15	141909	56.21621	9.79502
16	298211	64.32269	10.51303
17	627233	72.95676	11.22221
18	1318217	82.23573	11.94098
19	2772623	92.03798	12.65065
20	5829947	102.45289	13.36454

Table 1. (continued)

(c)		
N	C_{N}	$\left\langle R_{N}^{2}(x\right.$ and $\left.y)\right\rangle$
1	4	0.50000
2	11	1.36363
3	30	2.36666
4	77	3.66233
5	202	5.01485
6	516	6.63565
7	1338	8.29073
8	3413	10.21623
9	8794	12.17568
10	22437	14.39127
11	57614	16.65239
12	147043	19.15283
13	376884	21.71026
14	962144	24.49268
15	2463480	27.34195
16	6290460	30.40392

(d)

N	C_{N}	$\left\langle R_{N}^{2}(x)\right\rangle$	$\left\langle R_{N}^{2}(y)\right\rangle$
1	4	0.50000	0.50000
2	8	1.37500	0.87500
3	16	2.43750	1.31250
4	27	4.29629	2.07407
5	49	6.20408	2.87755
6	87	8.57471	3.88505
7	157	11.07643	5.05732
8	282	13.93617	6.44680
9	512	16.89062	7.99218
10	916	20.40611	9.86899
11	1658	23.97949	11.88178
12	2990	27.93979	14.16053
13	5412	32.08650	16.62989
14	9761	36.65741	19.39114
15	17668	41.40061	22.32997
16	31928	46.51290	25.53833
17	57793	51.85619	28.94738
18	104496	57.55871	32.62387
19	189171	63.50124	36.50234
20	342164	69.80148	40.64818
21	619397	76.35671	45.00156
22	1120801	83.24537	49.60903
23	2028972	90.40890	54.43389
24	3671659	97.90984	59.51530
25	6646627	105.68758	64.81440

From table 2 , it is likely that anisotropically constrained saws of type 1 and 2 belong to the universality class of DSAws whereas type 3 and 4 belong to the universality class of two-choice dsaws.

Table 2. μ, γ, ν_{x} and ν_{y} constants for different types of constrained saws.

Type	μ	γ	ν_{x}	ν_{y}
1	2.535	1.015	1.011	0.527
2	2.107	1.028	0.991	0.489
3	2.550	1.038	0.988	0.988
4	1.811	1.018	1.001	0.997

I am grateful to Dr B K Chakrabarti for many useful comments and suggestions.

References

Blöte H W J and Hilhorst H J 1984 J. Phys. A: Math. Gen. 17 L111
Cardy J L 1983 J. Phys. A: Math. Gen. 16 L355
Chakrabarti B K and Manna S S 1983 J. Phys. A: Math. Gen. 16 L113
Fisher M E and Sykes M F 1959 Phys. Rev. 11445
Grassberger P 1982 Z. Phys. B 48255
Guttmann A J and Wormald N C 1984 J. Phys. A: Math. Gen. 17 L271
Martin J L 1974 in Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (London:
Academic) p 97
Martin J L, Sykes M F and Hioe F T 1967 J. Chem. Phys. 463478
Nienhuis B 1982 Phys. Rev. Lett. 491062
Privman V 1983 J. Phys. A: Math. Gen. 16 L571
Redner S and Majid I 1983 J. Phys. A: Math. Gen. 16 L307

